JupyterLite
Features
The features of ipyvizzu that are available in JupyterLite are marked with a
green check.
-  Change the url of 
Vizzu(vizzu) -  Change the width of the 
Chart(width) -  Change the height of the 
Chart(height) -  Use scroll into view (
scroll_into_view=True) 
Display features:
-  Display all animations after 
_repr_html_method called (display=DisplayTarget.MANUAL) -  Display all animations after 
showmethod called (display=DisplayTarget.MANUAL) -  Automatically display all animations after the first cell
  (
display=DisplayTarget.BEGIN) -  Automatically display all animations after the currently running cell
  (
display=DisplayTarget.ACTUAL) -  Automatically display all animations after the last running cell
  (
display=DisplayTarget.END) -  Rerun any cell without rerun the first cell
  (
display!=DisplayTarget.MANUAL) 
Check Chart settings chapter for more details.
Installation
Place the following code into a notebook cell in order to install ipyvizzu
(visit Installation chapter for more options and
details).
import micropip
await micropip.install("ipyvizzu")
Sample
Try ipyvizzu in JupyterLite with the following sample.
# import pandas, js, asyncio, StringIO and ipyvizzu
import pandas as pd
import js, asyncio
from io import StringIO
from ipyvizzu import Chart, Data, Config, Style, DisplayTarget
# initialize Chart
chart = Chart(
    width="640px", height="360px"
)  # or Chart(width="640px", height="360px", display=DisplayTarget.ACTUAL)
# chart = Chart(width="640px", height="360px", display=DisplayTarget.BEGIN)
# chart = Chart(width="640px", height="360px", display=DisplayTarget.END)
# chart = Chart(width="640px", height="360px", display=DisplayTarget.MANUAL)
# add data to Chart
# download data from
# "https://ipyvizzu.vizzuhq.com/0.15/showcases/titanic/titanic.csv"
# and place it in your JupyterLite workspace
DB_NAME = "JupyterLite Storage"
async def get_contents(path):
    """use the IndexedDB API to acess JupyterLite's in-browser storage
    for documentation purposes, the full names of the JS API objects are used.
    see https://developer.mozilla.org/en-US/docs/Web/API/IDBRequest
    """
    queue = asyncio.Queue(1)
    IDBOpenDBRequest = js.self.indexedDB.open(DB_NAME)
    IDBOpenDBRequest.onsuccess = (
        IDBOpenDBRequest.onerror
    ) = queue.put_nowait
    await queue.get()
    if IDBOpenDBRequest.result is None:
        return None
    IDBTransaction = IDBOpenDBRequest.result.transaction(
        "files", "readonly"
    )
    IDBObjectStore = IDBTransaction.objectStore("files")
    IDBRequest = IDBObjectStore.get(path, "key")
    IDBRequest.onsuccess = IDBRequest.onerror = queue.put_nowait
    await queue.get()
    return IDBRequest.result.to_py() if IDBRequest.result else None
data = Data()
data_csv = await get_contents("titanic.csv")
data_frame = pd.read_csv(StringIO(data_csv["content"]))
data.add_data_frame(data_frame)
chart.animate(data)
# add config to Chart
chart.animate(
    Config(
        {
            "x": "Count",
            "y": "Sex",
            "label": "Count",
            "title": "Passengers of the Titanic",
        }
    )
)
chart.animate(
    Config(
        {
            "x": ["Count", "Survived"],
            "label": ["Count", "Survived"],
            "color": "Survived",
        }
    )
)
chart.animate(Config({"x": "Count", "y": ["Sex", "Survived"]}))
# add style to Chart
chart.animate(Style({"title": {"fontSize": 35}}))
# display Chart with show or _repr_html_ method (display=DisplayTarget.MANUAL)
# chart.show()
# chart
Check the Tutorial for more info.