Streamlit
There is a new Streamlit
component,
streamlit-vizzu, that
allow you to interact with an ipyvizzu
chart within a Streamlit
app without
the chart being redrawn on every interaction.
Features
The features of ipyvizzu
that are available in Streamlit
are marked with a
green check.
- Change the url of
Vizzu
(vizzu
) - Change the width of the
Chart
(width
) - Change the height of the
Chart
(height
) - Use scroll into view (
scroll_into_view
=True
)
Display features:
- Display all animations after
_repr_html_
method called (display
=DisplayTarget.MANUAL
) - Display all animations after
show
method called (display
=DisplayTarget.MANUAL
) - Automatically display all animations after the first cell
(
display
=DisplayTarget.BEGIN
) - Automatically display all animations after the currently running cell
(
display
=DisplayTarget.ACTUAL
) - Automatically display all animations after the last running cell
(
display
=DisplayTarget.END
) - Rerun any cell without rerun the first cell
(
display
!=DisplayTarget.MANUAL
)
Check Chart settings chapter for more details.
Installation
Run the following command in your command line in order to install ipyvizzu
(visit Installation chapter for more options and
details).
pip install ipyvizzu streamlit
Sample
Try ipyvizzu
in Streamlit
with the following sample.
# import streamlit, pandas and ipyvizzu
from streamlit.components.v1 import html
import pandas as pd
from ipyvizzu import Chart, Data, Config, Style, DisplayTarget
def create_chart():
# initialize Chart
chart = Chart(
width="640px", height="360px", display=DisplayTarget.MANUAL
)
# create and add data to Chart
data = Data()
data_frame = pd.read_csv(
"https://ipyvizzu.vizzuhq.com/0.15/showcases/titanic/titanic.csv"
)
data.add_data_frame(data_frame)
chart.animate(data)
# add config to Chart
chart.animate(
Config(
{
"x": "Count",
"y": "Sex",
"label": "Count",
"title": "Passengers of the Titanic",
}
)
)
chart.animate(
Config(
{
"x": ["Count", "Survived"],
"label": ["Count", "Survived"],
"color": "Survived",
}
)
)
chart.animate(Config({"x": "Count", "y": ["Sex", "Survived"]}))
# add style to Chart
chart.animate(Style({"title": {"fontSize": 35}}))
# return generated html code
return chart._repr_html_()
# generate Chart's html code
CHART = create_chart()
# display Chart
html(CHART, width=650, height=370)
Place the above code blocks into a python file (for example called
ipyvizzu_example.py
) and run the following command in your command line in
order to try it.
streamlit run ipyvizzu_example.py
Check the Tutorial for more info.