Skip to content

Data

Data types

ipyvizzu currently supports two types of data series: dimensions and measures. Dimensions slice the data cube ipyvizzu uses, whereas measures are values within the cube.

Dimensions are categorical series that can contain strings and numbers, but both will be treated as strings. Temporal data such as dates or timestamps should also be added as dimensions. By default, ipyvizzu will draw the elements on the chart in the order they are provided in the data set. Thus we suggest adding temporal data in a sorted format from oldest to newest.

Measures at the moment can only be numerical.

Adding data

There are multiple ways you can add data to ipyvizzu.

  • Using pandas DataFrame
  • Specify data by series - column after column if you think of a spreadsheet
  • Specify data by records - row after row
  • Using data cube form
  • Using JSON
Tip

You should set the data in the first animate call.

chart.animate(data)
Genres Kinds Popularity
Pop Hard 114
Rock Hard 96
Jazz Hard 78
Metal Hard 52
Pop Smooth 56
Rock Smooth 36
Jazz Smooth 174
Metal Smooth 121
Pop Experimental 127
Rock Experimental 83
Jazz Experimental 94
Metal Experimental 58

Using pandas DataFrame

Use add_data_frame method for adding data frame to Data.

import pandas as pd
from ipyvizzu import Data


data = {
    "Genres": [
        "Pop",
        "Rock",
        "Jazz",
        "Metal",
        "Pop",
        "Rock",
        "Jazz",
        "Metal",
        "Pop",
        "Rock",
        "Jazz",
        "Metal",
    ],
    "Kinds": [
        "Hard",
        "Hard",
        "Hard",
        "Hard",
        "Smooth",
        "Smooth",
        "Smooth",
        "Smooth",
        "Experimental",
        "Experimental",
        "Experimental",
        "Experimental",
    ],
    "Popularity": [
        114,
        96,
        78,
        52,
        56,
        36,
        174,
        121,
        127,
        83,
        94,
        58,
    ],
}
df = pd.DataFrame(data)

data = Data()
data.add_data_frame(df)

Info

ipyvizzu makes a difference between two types of data, numeric (measure) and not numeric (dimension). A column's dtype specifies that the column is handled as a measure or as a dimension.

It is also possible to add data frame index to Data with the add_data_frame_index method.

import pandas as pd
from ipyvizzu import Data


df = pd.DataFrame(
    {"Popularity": [114, 96, 78]}, index=["x", "y", "z"]
)

data = Data()
data.add_data_frame(df)
data.add_data_frame_index(df, "DataFrameIndex")

Using csv

Download music_data.csv here.

import pandas as pd
from ipyvizzu import Data


df = pd.read_csv(
    "https://ipyvizzu.vizzuhq.com/0.15/assets/data/music_data.csv"
)

data = Data()
data.add_data_frame(df)

Using Excel spreadsheet

Download music_data.xlsx here.

import pandas as pd
from ipyvizzu import Data


df = pd.read_excel(
    "https://ipyvizzu.vizzuhq.com/0.15/assets/data/music_data.xlsx"
)

data = Data()
data.add_data_frame(df)

Using Google Sheets

import pandas as pd
from ipyvizzu import Data


google_sheet_id = "<Google Sheet id>"
worksheet_name = "<Worksheet name>"

df = pd.read_csv(
    f"https://docs.google.com/spreadsheets/d/{google_sheet_id}/gviz/tq?tqx=out:csv&sheet={worksheet_name}"
)

data = Data()
data.add_data_frame(df)

For example if the url is https://docs.google.com/spreadsheets/d/abcd1234/edit#gid=0 then google_sheet_id here is abcd1234.

Using SQLite

import pandas as pd
import sqlite3
from ipyvizzu import Data


# establish a connection to the SQLite database
conn = sqlite3.connect("mydatabase.db")
# read data from a SQLite table into a pandas DataFrame
df = pd.read_sql("SELECT * FROM mytable", conn)
# close the connection
conn.close()

data = Data()
data.add_data_frame(df)

Note

You'll need to adjust the SQL query and the database connection parameters to match your specific use case.

Using MySQL

import pandas as pd
import mysql.connector
from ipyvizzu import Data


# establish a connection to the MySQL database
conn = mysql.connector.connect(
    user="myusername",
    password="mypassword",
    host="myhost",
    database="mydatabase",
)
# read data from a MySQL table into a pandas DataFrame
df = pd.read_sql("SELECT * FROM mytable", con=conn)
# close the connection
conn.close()

data = Data()
data.add_data_frame(df)

Note

You'll need to adjust the SQL query and the database connection parameters to match your specific use case.

Using PostgreSQL

import pandas as pd
import psycopg2
from ipyvizzu import Data


# establish a connection to the PostgreSQL database
conn = psycopg2.connect(
    user="myusername",
    password="mypassword",
    host="myhost",
    port="5432",
    database="mydatabase",
)
# read data from a PostgreSQL table into a pandas DataFrame
df = pd.read_sql("SELECT * FROM mytable", con=conn)
# close the connection
conn.close()

data = Data()
data.add_data_frame(df)

Note

You'll need to adjust the SQL query and the database connection parameters to match your specific use case.

Using Microsoft SQL Server

import pandas as pd
import pyodbc
from ipyvizzu import Data


# establish a connection to the Microsoft SQL Server database
conn = pyodbc.connect(
    "Driver={SQL Server};"
    "Server=myserver;"
    "Database=mydatabase;"
    "UID=myusername;"
    "PWD=mypassword"
)
# read data from a SQL Server table into a pandas DataFrame
df = pd.read_sql("SELECT * FROM mytable", con=conn)
# close the connection
conn.close()

data = Data()
data.add_data_frame(df)

Note

You'll need to adjust the SQL query and the database connection parameters to match your specific use case.

Specify data by series

When you specify the data by series or by records, it has to be in first normal form. Here is an example of that:

from ipyvizzu import Data


data = Data()
data.add_series(
    "Genres",
    [
        "Pop",
        "Rock",
        "Jazz",
        "Metal",
        "Pop",
        "Rock",
        "Jazz",
        "Metal",
        "Pop",
        "Rock",
        "Jazz",
        "Metal",
    ],
    type="dimension",
)
data.add_series(
    "Kinds",
    [
        "Hard",
        "Hard",
        "Hard",
        "Hard",
        "Smooth",
        "Smooth",
        "Smooth",
        "Smooth",
        "Experimental",
        "Experimental",
        "Experimental",
        "Experimental",
    ],
    type="dimension",
)
data.add_series(
    "Popularity",
    [114, 96, 78, 52, 56, 36, 174, 121, 127, 83, 94, 58],
    type="measure",
)

Specify data by records

from ipyvizzu import Data


data = Data()

data.add_series("Genres", type="dimension")
data.add_series("Kinds", type="dimension")
data.add_series("Popularity", type="measure")

record = ["Pop", "Hard", 114]

data.add_record(record)

records = [
    ["Rock", "Hard", 96],
    ["Jazz", "Hard", 78],
    ["Metal", "Hard", 52],
    ["Pop", "Smooth", 56],
    ["Rock", "Smooth", 36],
    ["Jazz", "Smooth", 174],
    ["Metal", "Smooth", 121],
    ["Pop", "Experimental", 127],
    ["Rock", "Experimental", 83],
    ["Jazz", "Experimental", 94],
    ["Metal", "Experimental", 58],
]

data.add_records(records)

Using data cube form

Genres
PopRockJazzMetal
Kinds Hard 114967852
Smooth 563674121
Experimental 127839458
Popularity
from ipyvizzu import Data


data = Data()

data.add_dimension("Genres", ["Pop", "Rock", "Jazz", "Metal"])
data.add_dimension("Kinds", ["Hard", "Smooth", "Experimental"])

data.add_measure(
    "Popularity",
    [
        [114, 96, 78, 52],
        [56, 36, 174, 121],
        [127, 83, 94, 58],
    ],
)

Using JSON

Download music_data.json here (in this example the data stored in the data cube form).

from ipyvizzu import Data


data = Data.from_json("../assets/data/music_data.json")